洛谷全站推荐

坏了,比赛当天上午我网络流的算法笔记刚过审,晚上就用上了。(忽略这一篇文章发布的日期)

这道题当然可以树形 dp,但很难构造边。

我们可以把点按照深度的奇偶性分开,这样就是一个二分图。

对于一个节点,它在三个颜色的情况下连的边会被删多少次是可以算出来的,所以在这个新图中每个点都对应了三个点,分贝是三个颜色,我们记点 ii 的第 jj 个颜色的次数为 ai,ja_{i,j}

那么就常规网络流操作,我们建立超级源汇点,源点向深度为奇数的点都连这个点对应的 ai,ja_{i,j},汇点同理。然后对于树上的每一条边,我们都把这条边连接的两个点任意两个不一样的颜色连边,也就是说每个树上的边会带来 66 条边。

这个时候跑最大流,那么要是最大流不是 n1n - 1 就无解了,否则有解。

接下来差一步构造,只需要在流完的图判断两个节点对应的边有没有流量即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#include<bits/stdc++.h>
using namespace std;
#define int long long
struct flowGraph
{
struct edge {
int v, nxt, cap, flow;
} edges[250000];

int head[222222], cnt = 0;
int n, S, T;
int maxflow = 0;
int dist[222222], cur[222222];
void init(int _n, int _S, int _T) {

for (int i = 0; i <= _n; i++) head[i] = -1;
cnt = 0;
S = _S;
T = _T;
n = _n;
}
void addedge(int u, int v, int w) {
edges[cnt] = {v, head[u], w, 0};
head[u] = cnt++;
edges[cnt] = {u, head[v], 0, 0};
head[v] = cnt++;
}

bool bfs() {

for (int i = 0; i <= n; i++) dist[i] = 0;
queue<int> q;
dist[S] = 1;
q.push(S);
while (q.size()) {
int u = q.front();
q.pop();
for (int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if ((!dist[v]) && (edges[i].cap > edges[i].flow)) {
dist[v] = dist[u] + 1;
q.push(v);
}
}
}
return dist[T];
}

int dfs(int u, int flow) {
if ((u == T) || (!flow)) {
return flow;
}
int res = 0;
for (int &i = cur[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v, f;
if ((dist[v] == dist[u] + 1) && (f = dfs(v, min(flow - res, edges[i].cap - edges[i].flow)))) {
res += f;
edges[i].flow += f;
edges[i ^ 1].flow -= f;
if (res == flow) {
return res;
}
}
}
return res;
}
int dinic() {
maxflow = 0;
while (bfs()) {
for (int i = 0; i <= n; i++) cur[i] = head[i];
maxflow += dfs(S, 1e18);
}
return maxflow;
}
} g;
vector<int> edges[2005];
map<char, int> mp;
int idx(int x, int c)
{
return x * 3 + c + 2;
}
void solve()
{
int n;
cin >> n;
vector<char> c(n + 1);
for (int i = 1; i <= n; i++) {
cin >> c[i];
}
for (int i = 1; i <= n; i++) {
edges[i].clear();
}
g.init(n * 3 + 10, 0, 1);
vector<int> deg(n + 1, 0);
vector<pair<int, int>> edge(n - 1);
for (int i = 0; i < n - 1; i++) {
int u, v;
cin >> u >> v;
edges[u].push_back(v);
edges[v].push_back(u);
edge[i] = {u, v};
deg[u]++;
deg[v]++;
}
vector<vector<int>> a(n + 1, vector<int>(3));
for (int i = 1; i <= n; i++) {
a[i][mp[c[i]]] = deg[i] / 3;
a[i][(mp[c[i]] + 1) % 3] = (deg[i] + 2) / 3;
a[i][(mp[c[i]] + 2) % 3] = (deg[i] + 1) / 3;
a[i].assign(a[i].size(), 0);
for(int k = 0; k < deg[i]; k++) {
a[i][(mp[c[i]] + k) % 3]++;
}
}
vector<int> dep(n + 1, 0);
function<void(int, int)> dfs = [&](int x, int fa) -> void {
for (auto nex : edges[x]) {
if (nex != fa) {
dep[nex] = dep[x] + 1;
dfs(nex, x);
}
}
};
dep[1] = 1;
dfs(1, 0);
vector<int> v1, v2;
for (int i = 1; i <= n; i++) {
if (dep[i] % 2 != 0) {
v1.push_back(i);
} else {
v2.push_back(i);
}
}
for (int i = 0; i < v1.size(); i++) {
for (int j = 0; j < 3; j++) {
if (a[v1[i]][j] > 0) {
g.addedge(0, idx(v1[i], j), a[v1[i]][j]);
}
}
}
for (int i = 0; i < v2.size(); i++) {
for (int j = 0; j < 3; j++) {
if (a[v2[i]][j] > 0) {
g.addedge(idx(v2[i], j), 1, a[v2[i]][j]);
}
}
}
vector<vector<int>> eidx(n - 1, vector<int>(9));
for (int i = 0; i < n - 1; i++) {
int u = edge[i].first;
int v = edge[i].second;
if (dep[u] % 2 == 0) {
swap(u, v);
}
int id = 0;
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) {
if (j == k) continue;
eidx[i][id] = g.cnt;
g.addedge(idx(u, j), idx(v, k), 1);
id++;
}
}
}
if (g.dinic() != n - 1) {
cout << "No" << '\n';
return;
}
cout << "Yes" << '\n';
vector<int> r1(n - 1), r2(n - 1);
for (int i = 0; i < n - 1; i++) {
int u = edge[i].first;
int v = edge[i].second;
bool flag = 0;
if (dep[u] % 2 == 0) {
swap(u, v);
flag = 1;
}
int id = 0;
int tp1 = -1, tp2 = -1;
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) {
if (j == k) {
continue;
}
if (g.edges[eidx[i][id]].flow == 1) {
tp1 = j;
tp2 = k;
}
id++;
}
}
if (flag) {
r1[i] = tp2;
r2[i] = tp1;
} else {
r1[i] = tp1;
r2[i] = tp2;
}
}
vector<int> col(n + 1);
for (int i = 1; i <= n; i++) {
col[i] = mp[c[i]];
}
vector<bool> vis(n - 1, 0);
vector<int> ans;
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - 1; j++) {
if (vis[j]) {
continue;
}
int u = edge[j].first;
int v = edge[j].second;
if (col[u] == r1[j] && col[v] == r2[j]) {
ans.push_back(j + 1);
vis[j] = 1;
col[u] = (col[u] + 1) % 3;
col[v] = (col[v] + 1) % 3;
break;
}
}
}
for (int i = 0; i < ans.size(); i++) {
cout << ans[i] << ' ';
}
cout << '\n';
}
signed main()
{
mp['R'] = 0;
mp['G'] = 1;
mp['B'] = 2;
int T;
cin >> T;
while (T--) {
solve();
}
return 0;
}